Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction **Primary results of the PARAGON-HF trial**

Scott D. Solomon, MD, and John J.V. McMurray, MD for the PARAGON-HF Committees, National Leaders and Investigators

Declaration of interest

- Research contracts (Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, BMS, Celladon, Cytokinetics, Eidos, Gilead, GSK, Ionis, Lone Star Heart, Mesoblast, MyoKardia, NIH/NHLBI, Novartis, Sanofi Pasteur, Theracos)
- Consulting/Royalties/Owner/ Stockholder of a healthcare company (Akros, Alnylam, Amgen, Arena, AstraZeneca, Bayer, BMS, Cardior, Corvia, Cytokinetics, Daiichi-Sankyo, Gilead, GSK, Ironwood, Merck, Myokardia, Novartis, Roche, Takeda, Theracos, Quantum Genetics, Cardurion, AoBiome, Janssen, Cardiac Dimensions, Tenaya)

DISCLOSURES

Dr. Solomon has received research grants from Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, BMS, Celladon, Cytokinetics, Eidos, Gilead, GSK, Ionis, Lone Star Heart, Mesoblast, MyoKardia, NIH/NHLBI, Novartis, Sanofi Pasteur, Theracos, and has consulted for Akros, Alnylam, Amgen, Arena, AstraZeneca, Bayer, BMS, Cardior, Corvia, Cytokinetics, Daiichi-Sankyo, Gilead, GSK, Ironwood, Merck, Myokardia, Novartis, Roche, Takeda, Theracos, Quantum Genetics, Cardurion, AoBiome, Janssen, Cardiac Dimensions, Tenaya

Background and rationale

Heart failure with preserved ejection fraction (HFpEF) accounts for half of heart failure, is rising in prevalence, and is associated with substantial morbidity and mortality¹

While evidence-based therapies exist for heart failure with reduced ejection fraction (HFrEF; LVEF ≤40%), no therapies have been proven beneficial in those with LVEF >40%

In PARADIGM-HF, the angiotensin receptor neprilysin inhibitor sacubitril/valsartan reduced HF hospitalization and CV death, compared with enalapril, in patients with HFrEF (LVEF ≤40%)²

In a phase II trial in HFpEF, sacubitril/valsartan reduced NT-proBNP, improved left atrial size and NYHA functional class, when compared with valsartan³

PARAGON-HF study design

Randomized, double-blind, active comparator trial testing the hypothesis that sacubitril/valsartan, compared with valsartan, would reduce the composite outcome of total HF hospitalizations and CV death

Primary Endpoint

Composite of total (first and recurrent) HF hospitalizations and CV death

Secondary Endpoints:

- Improvement in NYHA functional classification at 8 months
- Changes in KCCQ clinical summary score at 8 months
- Time to first occurrence of worsening renal function
- Time to all-cause mortality

Key inclusion & exclusion criteria

Key inclusion criteria	Key exclusion criteria
• ≥ 50 years of age and LVEF ≥ 45%	 Any prior measurement of LVEF < 40%
 Heart failure signs/symptoms (NYHA Class II–IV) requiring treatment with diuretic(s) for at least 30 days prior to enrollment Structural heart disease (LAE or LVH by echocardiography) 	 Current acute decompensated heart failure Alternative reason for signs and symptoms SBP < 110 or > 180mm Hg (or > 150mm Hg if patient not taking 3 or more antihypertensive medications)
• Elevation in natriuretic peptides	
 NT-proBNP 200 pg/ml if hospitalized for HF within 9 months, and 300 pg/ml if not hospitalized; 3-fold increase for patients in AF at enrollment 	

Statistical considerations

To fully capture the total burden of disease in this population, the primary analysis incorporated total (first and recurrent) HF hospitalizations and CV death, utilizing the semi-parametric proportional rates model of Lin, Wei, Yang, Ying¹ (LWYY), a modified Anderson-Gill model with a robust variance estimator to account for the correlation between events. This method considers the time from randomization to each of the total HF hospital admissions and CV death

We calculated that accrual of 1847 primary events would provide greater than 80% power with a two-sided alpha level of 0.05 to show a 19% relative rate reduction

1. Lin DW, et al. J R Statist Soc B 2000;62:711-30.

PARAGON-HF was a global trial

Paris 2019

of Cardiology

PARAGONHE

Patient disposition

Valsartan run-in n = 541 (9.4					
Adverse event	n = 340				
Subject/guardian decision	n = 98				
Protocol deviation	n = 62				
Other	n = 41				
Sacubitril/valsartan run-in failures					
n = 384 (7.3%)					
Adverse event	n = 262				

Subject/guardian decision n = 37Protocol deviation n = 49Other n = 36

Excluded from FAS because of site closure due to GCP violation

Sacubitril/valsartan	Valsartan
N = 12	N = 14

	Sacubitril/ valsartan	Valsartan
Discontinued treatment for any reason other than death	25%	27%
Percent on target dose among patients on study medication at final visit	82%	85%

Baseline demographics		Sacubitril/valsartan N=2,407	Valsartan N=2,389	
Age (years) – mean (SD)		72.7 (8.3)	72.8 (8.5)	
Sex – n (%)	Male	1166 (48.4)	1151 (48.2)	
	Female	1241 (51.6)	1238 (51.8)	
Race – n (%)	Caucasian	82%	81%	
	Black	2.2%	2.1%	
	Asian	12%	13%	
Region – n (%)	North America*	12%	11%	
	Latin America	7.9%	7.5%	
	Western Europe	29%	29%	
	Central Europe	36%	36%	
	Asia/Pacific/other**	16%	16%	
Baseline LVEF – median [IQR]		57 [51,62]	57 [50,63]	
Baseline NT-proBNP (pg/mL) – median (IQR) – Sinus rhythm		583 [370, 1046]	611 [389, 1072]	
Baseline NT-proBNP (pg/mL) – median (IQR) – Atrial fibrillation		1633 [1191, 2368]	1536 [1153, 2212]	

^{*}North America = US and Canada. **Asia/Pacific/Other includes Israel, South Africa, Australia, China, India, Japan, Rep of Korea, Philippines, Singapore, Taiwan.

Baseline demographics

		Sacubitril/valsartan N=2,407	Valsartan N=2,389
NYHA class at randomization – n (%) Class I	3.0%	2.7%
	Class II	78%	77%
	Class III	19%	20%
	Class IV	0.3%	0.5%
BMI – mean (SD)		30.2 (4.9)	30.3 (5.1)
Baseline systolic/diastolic blood pressure at randomization – mean (SD)/mean(SD)		130.5 (15.6)/74.3 (10.6)	130.6 (15.3)/74.3 (10.4)
Medical history – n (%)	Hypertension, n (%)	96%	95%
	Diabetes mellitus, n (%)	44%	43%
	Atrial fibrillation at screening ECG, n (%)	32%	33%
	Hospitalization for HF within 9 months	38%	39%
Medications Prior to randomizati	on ACEi or ARBs	87%	87%
At randomization	Diuretics	94%	95%
	MRA	24%	27%*
	Beta blockers	79%	79%
	Calcium channel blockers	34%	34%

Baseline characteristics balanced if not noted by *p<0.05.

PARAGON-HF primary results

Recurrent event analysis of total HF hospitalizations and CV death*

^{*}Semiparametric LWYY method.

ESC Congress World Congress of Cardiology

HF hospitalizations and CV death

Paris 2019

ESC Congress World Congress of Cardiology

^{*}Semiparametric LWYY method

Sensitivity and supportive analyses for primary endpoint

Consistent with primary endpoint

Sensitivity analysis	Estimate (RR or HR)	Nominal P-value
Primary analysis LWYY (stratified by region) – adjudicated	RR = 0.87 (0.75, 1.01)	0.059
Primary analysis (LWYY) including adjudicated urgent HF visits in composite	RR = 0.86 (0.75, 0.99)	0.040
Investigator reported events (LWYY)	RR = 0.84 (0.74, 0.97)	0.014
Negative binomial method	RR = 0.87 (0.74, 1.01)	0.066
Primary analysis LWYY (stratified by country)*	RR = 0.86 (0.75, 0.997)	0.045
Time to first composite event (CV death or HF hospitalization)	HR = 0.92 (0.81, 1.03)	0.15

^{*}Post-hoc analysis; LWYY, Lin, Wei, Yang, Ying; RR, rate ratio.

Together with

Secondary endpoints

	Sacubitril/valsartan N = 2316	Valsartan N = 2302	Effect size (95% CI)	Nominal P-value
NYHA functional classification at 8 months – Change from baseline (%) Improved Unchanged Worsened	76.3%	12.6% 77.9% 9.6%	OR for improvement 1.45 (1.13, 1.86)	0.004
KCCQ clinical summary score at 8 months – Change from baseline (SE)	-1.6 (0.4)	-2.6 (0.4)	LSM of difference = 1.03 (0.00, 2.1)	0.051
KCCQ responder (> than 5-point improvement)	33.0%	29.6%	OR = 1.30 (1.04, 1.61)	0.019
Worsening Renal Function Composite of renal death, reaching ESRD, or ≥50% decline in eGFR relative to baseline.	1.4%	2.7%	HR = 0.50 (0.33, 0.77)	0.002
All-cause mortality (%)	14.2%	14.6%	HR = 0.97 (0.84, 1.13)	0.68

ESC Congress World Congress of Cardiology

Safety endpoints

Adverse event		Sacubitril/valsartan (N = 2407)	Valsartan (N = 2389)	P-value
Hypotension with SBP < 100 mm	Hg	15.8%	10.8%	<0.0001
Elevated serum creatinine	≥ 2.0 mg/dl	10.8%	13.7%	0.002
	≥ 2.5 mg/dl	4%	4.6%	0.36
	≥ 3.0 mg/dl	1.6%	1.7%	0.79
Elevated serum potassium	> 5.5 mmol/liter	13.2%	15.3%	0.05
	> 6.0 mmol/liter	3.1%	4.3%	0.04
Angioedema*		0.6%	0.2%	0.02

^{*}Adjudicated

Pre-specified subgroups for primary endpoint

Evidence for overall heterogeneity

Subgroup	No. of events /patients	Rate ratio (95% CI)			
Overall	1903/4796	0.87 (0.75-1.01)			
Age (years)				•	
Less than 65 years	276/825	0.99 (0.64-1.53)			
65 years or older	1627/3971	0.85 (0.73-0.99)			
Age (years)					
Less than 75 years	938/2597	0.82 (0.66-1.02)			
75 years or older	965/2199	0.92 (0.76-1.11)			
Sex*					
Male	980/2317	1.03 (0.85-1.25)		-	
Female	923/2479	0.73 (0.59-0.90)			
Race					
Caucasian	1542/3907	0.83 (0.71-0.97)		-	
Black	89/102	0.69 (0.24-1.99)	<	<u> </u>	_
Asian	237/607	1.25 (0.87-1.79)			
Other	35/180	1.03 (0.47-2.28)		-	⇒
Region					
North America	478/559	0.80 (0.57-1.14)			
Latin America	83/370	1.33 (0.75-2.36)		-	⇒
Western Europe	544/1390	0.69 (0.53-0.89)		—	
Central Europe	466/1715	0.97 (0.76-1.24)		_	
Asia/Pacific	332/762	1.10 (0.79-1.52)			
			0.4	0.6 0.8 1.0	2.0
Multivariate intera	action p < 0.05	•		Rate ratio (95% CI)	

Together with

ESC Congress World Congress
Paris 2019 of Cardiology

Significant Heterogeneity in Multivariate Analysis by Ejection Fraction and Sex

Only interactions for sex and ejection fraction remained nominally significant

of Cardiology

Subgroup	No. of events/	Rate ratio	Primary endpoi	nt
Sex	patients	(95% CI)		Multivariable interaction p-value
Male	980/2317	1.03 (0.85–1.25)	_	
Female	923/2479	0.73 (0.59–0.90)	_	P < 0.006
LVEF				
at or below median (57%)	1048/2495	0.78 (0.64–0.95)		P = 0.03 (categorical)
above median (57%)	855/2301	1.00 (0.81-1.23)	_	P = 0.002 (continuous)
				2.0
Together with		0.4	0.6 0.8 1.0 Rate ratio (95%	2.0 CI)
SC Congress World Congress				

Treatment effect by ejection fraction quartiles

Primary composite total HF hospitalizations and CV death

Conclusions

In patients with HFpEF, when comparing sacubitril/valsartan to valsartan, we observed a modest nonsignificant ~13% reduction in the primary outcome overall, which was driven mainly by a reduction in first and recurrent HF hospitalizations

Several sensitivity analyses and secondary analyses, including improvement in various measures of symptoms, quality of life, and renal function, suggested benefits with sacubitril/valsartan compared with valsartan

The use of an angiotensin receptor blocker as an active comparator, which we felt necessary not because this is standard of care in this population, but because of the large number of patients with HFpEF already on RAS inhibitors, may have attenuated our overall treatment effect

Our data suggest heterogeneity in the treatment response, with suggestion of greater benefit in women and in individuals with lower LVEF

Interpretation

Although subgroups need to be interpreted with caution, these data should be considered in the context of PARADIGM-HF, with nearly identical enrollment criteria with the exception of ejection fraction, in which sacubitril/valsartan reduced CV death and HF Hospitalization in patients with LVEF ≤ 40%

These data suggest that sacubitril/valsartan may be beneficial in some patients with HFpEF, particularly in those with ejection fraction that is not frankly reduced, but less than normal, with potentially clinically important relative and absolute risk reduction in these patients

More broadly, these data support the concept that HFpEF may be both phenotypically heterogeneous, and heterogeneous with respect to treatment. Further investigation should explore which patients will benefit most from sacubitril/valsartan as well as other therapies that may modify disease in this heterogeneous syndrome

These findings have implications for our understanding and treatment of heart failure with preserved ejection fraction.

Steering Committee

Scott D. Solomon, Co-Chair John J. McMurray, Co-chair

Inder S. Anand
Felipe Martinez
Margaret M. Redfield

Junbo Ge Milton Packer Jean L. Rouleau Michael R. Zile

Carolyn S. P. Lam, Aldo P. Maggioni Marc A. Pfeffer Burkert Pieske Dirk J. Van Veldhuisen Faiez Zannad

Clinical Events Committee

Akshay Desai, Chair

Ebrahim Barkoudah

David Charytan

Peter V. Finn

Finnian McCausland

Abdel Brahimi

Simon Correa-Gaviria

Howard Hartley

Martina McGrath

Muthiah Vaduganathan

Angioedema Committee

Allen Kaplan, Chair Nancy Brown Bruce Zuraw

Data Safety Monitoring Committee

Henry Dargie, Chair

Robert Foley Gary Francis
Michele Komajda Stuart Pocock

Independent Statistician: Brian Claggett

Together with

ESC Congress World Congress
Paris 2019 of Cardiology

Sergio Perrone, Argentina
Stefan Janssens , Belgium
Eileen O'Meara, Canada,
Davor Milicic, Croatia
Jyrki Taurio, Finland,
Stefan Anker, Germany,
Bela Merkely, Hungary
Michele Senni, Italy
Gerard Linssen, Netherlands
Antonio S. Sibulo, Jr, Philippines,
Dragos Vinereanu, Romania
David Sim Kheng Leng, Singapore
Naresh Ranjith, South Africa
Andreas Flammer, Switzerland

John Cleland, United Kingdom

Adel Rizkala Jianjian Gong Shalini Sabarwal

National Lead Investigators

Nagesh Anavekar, Australia
Jose Francisco Kerr Saraiva, Brazil
Jingmin Zhou , China
Jiří Widimský, Jr., Czech Republic,
Michel Galinier, France
Gerasimos Filippatos, Greece
Vijay Kumar Chopra, India
Yoshihiko Saito, Japan,
Dan Atar, Norway,
Malgorzata Lelonek, Poland,
Sergey Boytsov, Russian federation
Eva Goncalvesova, Slovakia
Josep Comin Colet, Spain
Chen-Huan Chen, Taiwan
Sanjiv Shah, United states

Sponsor

Victor Shi Martin Lefkowitz
Akiko Inubushi-Molessa
Ilya Lukashevich
Lu-May Chiang

Robert Zweiker, Austria
Tzvetana Katova , Bulgaria
Luis Eduardo Echeverria, Colombia
Lars Køber , Denmark
Hans Dirk Duengen, Germany
Juan Luis Arango, Guatemala
Tuvia Ben-Gal, Israel
Jose Luis Arenas, Mexico
Armando Godoy, Peru
ByungHee Oh, Republic of Korea,
Petar Seferovic, Serbia
Bojan Vrtovec, Slovenia
Lars Lund, Sweden
Mehmet Birhan Yilmaz, Turkey
Nancy Sweitzer, United States

Wenyan Wang Shannon O'Connell-Jones

We thank the participants!!

ORIGINAL ARTICLE

Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction

S.D. Solomon, J.J.V. McMurray, I.S. Anand, J. Ge, C.S.P. Lam, A.P. Maggioni, F. Martinez, M. Packer, M.A. Pfeffer, B. Pieske, M.M. Redfield, J.L. Rouleau, D.J. van Veldhuisen, F. Zannad, M.R. Zile, A.S. Desai, B. Claggett, P.S. Jhund, S.A. Boytsov, J. Comin-Colet, J. Cleland, H.-D. Düngen, E. Goncalvesova, T. Katova, J.F. Kerr Saraiva, M. Lelonek, B. Merkely, M. Senni, S.J. Shah, J. Zhou, A.R. Rizkala, J. Gong, V.C. Shi, and M.P. Lefkowitz, for the PARAGON-HF Investigators and Committees

